Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 15, 2026
-
Many parasitic insects, including lice, form close relationships with endosymbiotic bacteria that are crucial for their survival. In this study, we used genomic sequencing to investigate the distribution and evolutionary history of the bacterial genusSodalisacross a broad range of feather louse species spanning 140 genera. Phylogenomic analysis revealed significant diversity amongSodalislineages in feather lice and robust evidence for their independent and repeated acquisition by different louse clades throughout their radiation. Among the 1020 louse genomes analysed, at least 22% containedSodalis, distributed across 57 louse genera. Cophylogenetic analyses between theSodalisand feather louse phylogenies indicated considerable mismatch. This phylogenetic incongruence between lice andSodalis, along with the presence of distantly relatedSodalislineages in otherwise closely related louse species, strongly indicates repeated independent acquisition of this endosymbiont. Additionally, evidence of cospeciation among a few closely related louse species, coupled with frequent acquisition of these endosymbionts from free-living bacteria, further highlights the diverse evolutionary processes shapingSodalisendosymbiosis in feather lice.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Abstract Evolution results from the interaction of stochastic and deterministic processes that create a web of historical contingency, shaping gene content and organismal function. To understand the scope of this interaction, we examine the relative contributions of stochasticity, determinism, and contingency in shaping gene inactivation in 34 lineages of endosymbiotic bacteria,Sodalis, found in parasitic lice,Columbicola, that are independently undergoing genome degeneration. Here we show that the process of genome degeneration in this system is largely deterministic: genes involved in amino acid biosynthesis are lost while those involved in providing B-vitamins to the host are retained. In contrast, many genes encoding redundant functions, including components of the respiratory chain and DNA repair pathways, are subject to stochastic loss, yielding historical contingencies that constrain subsequent losses. Thus, while selection results in functional convergence between symbiont lineages, stochastic mutations initiate distinct evolutionary trajectories, generating diverse gene inventories that lack the functional redundancy typically found in free-living relatives.more » « lessFree, publicly-accessible full text available December 1, 2025
-
Islands are well known for their unique biodiversity and significance in evolutionary and ecological studies. Nevertheless, the extinction of island species accounts for most human-caused extinctions in recent time scales, which have accelerated in recent centuries. Pigeons and doves (Columbidae) are noteworthy for the high number of island endemics, as well as for the risks those species have faced since human arrival. On Caribbean islands, no other columbid has generated more phylogenetic interest and uncertainty than the blue-headed quail-dove,Starnoenas cyanocephala. This endangered Cuban endemic has been considered more similar, both behaviourally and phenotypically, to Australasian species than to the geographically closer ‘quail-dove’ (Geotrygons.l.) species of the Western Hemisphere. Here, we use whole genome sequencing fromStarnoenasand other newly sequenced columbids in combination with sequence data from previous publications to investigate its relationships. Phylogenomic analyses, which represent 35 of the 51 genera currently comprising the Columbidae, reveal that the blue-headed quail-dove is the sole representative of a lineage diverging early in the radiation of columbids.Starnoenasis sister to the species-rich subfamily Columbinae, which is found worldwide. As a highly distinctive evolutionary lineage lacking close modern relatives, we recommend elevating the conservation priority ofStarnoenas.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract Recently, genomic approaches have helped to resolve phylogenetic questions in many groups of parasitic organisms, including lice (Phthiraptera). However, these approaches have still not been applied to one of the most diverse groups of lice, Amblycera. To fill this gap, we applied phylogenomic methods based on genome‐level exon sequence data to resolve the relationships within and among the families of Amblycera. Our phylogenomic trees support the monophyly of the families Ricinidae and Laemobothriidae. However, the families Trimenoponidae and Gyropidae are not monophyletic, indicating that they should be merged into a single family. The placement ofTrinotonis unstable with respect to Boopiidae and Menoponidae, and we suggest recognizing Trinotonidae as a separate family. At the genus level, the generaColpocephalum,Hohorstiella,MenacanthusandRicinuswere recovered as paraphyletic. Regarding generic complexes, the tree revealed theMenacanthuscomplex to be monophyletic, but theColpocephalumcomplex paraphyletic, including genera not traditionally placed in this group. Dating analysis suggests that the divergence among families of Amblycera occurred shortly after the Cretaceous–Paleogene boundary 66 Mya. Cophylogenetic analyses revealed many host‐switching events during the diversification of Amblycera, indicating that the evolutionary history of Amblycera does not tightly mirror that of its hosts. Ancestral host reconstructions revealed that the ancestral host of Amblycera was most likely a bird, with two host switching events to mammals. By combining phylogenomics, molecular dating and cophylogenetic analyses, we provide the first large‐scale picture of amblyceran evolution, which will serve as a basis for future studies of this group.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Organisms that have repeatedly evolved similar morphologies owing to the same selective pressures provide excellent cases in which to examine specific morphological changes and their relevance to the ecology and evolution of taxa. Hosts of permanent parasites act as an independent evolutionary experiment, as parasites on these hosts are thought to be undergoing similar selective pressures. Parasitic feather lice have repeatedly diversified into convergent ecomorphs in different microhabitats on their avian hosts. We quantified specific morphological characters to determine (i) which traits are associated with each ecomorph, (ii) the quantitative differences between these ecomorphs, and (iii) if there is evidence of displacement among co-occurring lice as might be expected under louse–louse competition on the host. We used nano-computed tomography scan data of 89 specimens, belonging to four repeatedly evolved ecomorphs, to examine their mandibular muscle volume, limb length and three-dimensional head shape data. Here, we find evidence that lice repeatedly evolve similar morphologies as a mechanism to escape host defences, but also diverge into different ecomorphs related to the way they escape these defences. Lice that co-occur with other genera on a host exhibit greater morphological divergence, indicating a potential role of competition in evolutionary divergence.more » « less
-
Abstract The effective population size (Ne) of an organism is expected to be generally proportional to the total number of individuals in a population. In parasites, we might expect the effective population size to be proportional to host population size and host body size, because both are expected to increase the number of parasite individuals. However, among other factors, parasite populations are sometimes so extremely subdivided that high levels of inbreeding may distort these predicted relationships. Here, we used whole-genome sequence data from dove parasites (71 feather louse species of the genus Columbicola) and phylogenetic comparative methods to study the relationship between parasite effective population size and host population size and body size. We found that parasite effective population size is largely explained by host body size but not host population size. These results suggest the potential local population size (infrapopulation or deme size) is more predictive of the long-term effective population size of parasites than is the total number of potential parasite infrapopulations (i.e., host individuals).more » « less
-
Next-generation sequencing technologies are revolutionizing the fields of genomics, phylogenetics, and population genetics. These new genomic approaches have been extensively applied to a major group of parasites, the lice (Insecta: Phthiraptera) of birds and mammals. Two louse genomes have been assembled and annotated to date, and these have opened up new resources for the study of louse biology. Whole genome sequencing has been used to assemble large phylogenomic datasets for lice, incorporating sequences of thousands of genes. These datasets have provided highly supported trees at all taxonomic levels, ranging from relationships among the major groups of lice to those among closely related species. Such approaches have also been applied at the population scale in lice, revealing patterns of population subdivision and inbreeding. Finally, whole genome sequence datasets can also be used for additional study beyond that of the louse nuclear genome, such as in the study of mitochondrial genome fragmentation or endosymbiont function.more » « less
-
Mammals host a wide diversity of parasites. Lice, comprising more than 5,000 species, are one group of ectoparasites whose major lineages have a somewhat patchwork distribution across the major groups of mammals. Here we explored patterns in the diversification of mammalian lice by reconstructing a higher-level phylogeny of these lice, leveraging whole genome sequence reads to assemble single-copy orthologue genes across the genome. The evolutionary tree of lice indicated that three of the major lineages of placental mammal lice had a single common ancestor. Comparisons of this parasite phylogeny with that for their mammalian hosts indicated that the common ancestor of elephants, elephant shrews and hyraxes (that is, Afrotheria) was the ancestral host of this group of lice. Other groups of placental mammals obtained their lice via host-switching out of these Afrotherian ancestors. In addition, reconstructions of the ancestral host group (bird versus mammal) for all parasitic lice supported an avian ancestral host, indicating that the ancestor of Afrotheria acquired these parasites via host-switching from an ancient avian host. These results shed new light on the long-standing question of why the major groups of parasitic lice are not uniformly distributed across mammals and reveal the origins of mammalian lice.more » « less
-
Abstract Host‐specialist parasites of endangered large vertebrates are in many cases more endangered than their hosts. In particular, low host population densities and reduced among‐host transmission rates are expected to lead to inbreeding within parasite infrapopulations living on single host individuals. Furthermore, spatial population structures of directly‐transmitted parasites should be concordant with those of their hosts. Using population genomic approaches, we investigated inbreeding and population structure in a host‐specialist seal louse (Echinophthirius horridus) infesting the Saimaa ringed seal (Phoca hispida saimensis), which is endemic to Lake Saimaa in Finland, and is one of the most endangered pinnipeds in the world. We conducted genome resequencing of pairs of lice collected from 18 individual Saimaa ringed seals throughout the Lake Saimaa complex. Our analyses showed high genetic similarity and inbreeding between lice inhabiting the same individual seal host, indicating low among‐host transmission rates. Across the lake, genetic differentiation among individual lice was correlated with their geographic distance, and assignment analyses revealed a marked break in the genetic variation of the lice in the middle of the lake, indicating substantial population structure. These findings indicate that movements of Saimaa ringed seals across the main breeding areas of the fragmented Lake Saimaa complex may in fact be more restricted than suggested by previous population‐genetic analyses of the seals themselves.more » « less
An official website of the United States government
